
[1]

--
ω Question Paper is divided into 4 sections A, B, C and D.
ω Section A comprises of questions (1 & 2) comprises 12&18=>30 marks

ü Question 1 comprises Data Handling-2(DH-2) (Series, NumPy)
ü Question 2 comprises of question from Data Handling -2(DH-2)(Data Frames)

ω Section B comprises of questions from Basic Software Engineering, comprises 15 marks.
ω Section C comprises of questions from Data Management-2(DM-2) comprises 15 marks.
ω Section D comprises of questions from Society, Law and Ethics-2(SLE-2) comprises 10 marks.

--

[1] Python Pandas

Lists: A list is a collection which is ordered and changeable. In Python lists are written

with square brackets.

Example: Create & run a List:

mylist = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"]
print(mylist[1])
print(mylist[-1])
print(mylist [2:5])
print(mylist[-4:-1])

 Output:

ώΨbananaΩϐ
ώΨƳŀƴƎƻΩϐ
['cherry', 'orange', 'kiwi']
['orange', 'kiwi', 'melon']

String: Like many other popular programming languages, strings in Python are arrays of

bytes representing Unicode characters.

b = "Hello, World!"
print(b[2:5])

Output: llo

[2]

Series: Pandas Series is a one-dimensional labeled array capable of holding data of any

type (integer, string, float, python objects, etc.). The axis labels are collectively called

index.

import pandas as pd
import numpy as np
myseries = np.array(['g','e','e','k','s'])
res = pd.Series(myseries)
print(res)

0 g
1 e
2 e
3 k
4 s
dtype: object

 Tuple: A tuple is a collection which is ordered and unchangeable. In Python tuples are

written with round brackets.

mytuple = ("apple", "banana", "cherry")
print(mytuple)

('apple', 'banana', 'cherry')

Dictionary: A dictionary is a collection which is unordered, changeable and indexed. In

Python dictionaries are written with curly brackets, and they have keys and values.

mydict = { "brand": "Ford",
 "model": "Mustang",
 "year": 1964 }
print(mydict)

{'brand': 'Ford', 'model': 'Mustang', 'year': 1964}

Python Pandas Data Frame is a 2-dimensional data potentially heterogeneous (different types)

tabular data structure with labeled axes (rows and columns). It is similar to a spread sheet or SQL

table, or a Dictionary of Series objects. It is generally the most commonly used pandas object.

Data Frame consists of three principal components, the data, rows, and columns.

Creating a Data Frame Using List: Data Frame can be created using a single list or a list of lists.

import pandas as pd
lst = [ΨLƴŘƻΩ, 'Aryan', 'School', 'of', 'Human', 'Resource', 'Development']
df = pd.DataFrame(lst)
print(df)

 0
0 Indo
1 Aryan
2 School
3 of
4 Human
5 Resource

[3]

6 Development

1.1.1 PIVOTING :

Pivot: Pivot reshapes data and uses unique values from index/ columns to form axes of the

resulting data frame. Index is column name to use to make new frameôs index. Columns are

column name to use to make new frameôs columns. Values are column name to use for

populating new frameôs values.

Pivot Table: Pivot table takes simple column-wise data as input, and groups the entries with

aggregate values into a two-dimensional table that provides a multidimensional summarization.

Letôs see here the difference between Data Frame, Pivot and Pivot Table of the same Data

 Frame, in the following example:

Data Frame: It is a 2-dimensional heterogeneous data in tabulated form.

ITEM COMPANY RUPEES USD
TV LG 12000 700
TV VIDEOCON 10000 650
AC LG 15000 800
AC SONY 14000 750

Pivot: Summarised of data frame

COMPANY LG SONY VIDEOCON
ITEM
AC 15000 14000 NaN
TV 12000 NaN 10000

Pivot Table: Summarised and aggregate (mean) of Item wise costs of the same data frame

COMPANY LG SONY VIDEOCON
ITEM
AC NaN 14000 NaN
TV 13500 NaN 10000

Example of Data Frame, Pivot and Pivot -Table:

import pandas as pd
import numpy as np
df = pd.DataFrame({'A': ['John', 'Boby', 'Mina', 'Peter', 'Nicky'],
 'B': ['Masters', 'Graduate', 'Graduate', 'Masters', 'Graduate'],
 'C': [27, 23, 21, 23, 24]})
print("Data Frame: \n",df)
pv = df.pivot(index ='A', columns ='B', values =['C', 'A'])
print("Pivot: \n",pv)
pvt = pd.pivot_table(df, values ='A', index =['B', 'C'],columns =['B'], aggfunc = np.sum)
print("Pivot Table: \n",pvt)

Data Frame:
 A B C

[4]

0 John Masters 27
1 Boby Graduate 23
2 Mina Graduate 21
3 Peter Masters 23
4 Nicky Graduate 24

Pivot:
 C A
B Graduate Masters Graduate Masters
A
Boby 23 NaN Boby NaN
John NaN 27 NaN John
Mina 21 NaN Mina NaN
Nicky 24 NaN Nicky NaN
Peter NaN 23 NaN Peter

Pivot Table:
 B Graduate Masters
B C
Graduate 21 Mina NaN
 23 Boby NaN
 24 Nicky NaN
Masters 23 NaN Peter
 27 NaN John

Using fillna()

import pandas as pd

import numpy as np

df = pd.DataFrame({ 'A' : ['John' , 'Boby' , 'Mina' , 'Peter' , 'Nicky'],

 'B' : ['Masters' , 'Graduate' , 'Graduate' , 'Masters' , 'Graduate'],

 'C' : [27, 23, 21, 23, 24]})

print ("Data Frame: \ n" ,df)

pv = df.pivot(index = 'A' , columns = 'B' , values =['C' , 'A'])

print ("Pivot: \ n" ,pv.fillna(''))

pvt = pd.pivot_table(df, values = 'A' , index =['B' , 'C'],columns =['B'], aggfunc =

np. sum)

print ("Pivot Table: \ n" ,pvt.fillna(''))

[5]

1.1.2 SORTING

Pandas sort_values() function sorts a data frame in Ascending or Descending order of passed

Column. It's different than the sorted Python function since it cannot sort a data frame and

particular column cannot be selected.

Syntax:
DataFrame.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')

Example:
import pandas as pd
import numpy as np
df = pd.DataFrame({'A': ['John', 'Boby', 'Mina', 'Peter', 'Nicky'],
 'B': ['Masters', 'Graduate', 'Graduate', 'Masters', 'Graduate'],
 'C': [27, 23, 21, 23, 24]})
x=df.sort_values(by=['A'])
print(ά±ŀƭǳŜǎ ƻŦ x: \ƴάΣȄ)
y=df.sort_values(by=['A', 'B'], ascending=False)
print(ά±ŀƭǳŜǎ ƻŦ ȅΥ \ƴάΣy)

Values of x:
 A B C
1 Boby Graduate 23
0 John Masters 27
2 Mina Graduate 21
4 Nicky Graduate 24
3 Peter Masters 23

Values of y:
 A B C
3 Peter Masters 23
4 Nicky Graduate 24
2 Mina Graduate 21
0 John Masters 27
1 Boby Graduate 23

Pandas data frame sort_index() function also sorts objects by labels along the given axis.

Syntax:
5ŀǘŀCǊŀƳŜΦǎƻǊǘψƛƴŘŜȄόŀȄƛǎҐлΣ ƭŜǾŜƭҐbƻƴŜΣ ŀǎŎŜƴŘƛƴƎҐ¢ǊǳŜΣ ƛƴǇƭŀŎŜҐCŀƭǎŜΣ ƪƛƴŘҐΩǉǳƛŎƪǎƻǊǘΩΣ
ƴŀψǇƻǎƛǘƛƻƴҐΩƭŀǎǘΩΣ ǎƻǊǘψǊŜƳŀƛƴƛƴƎҐ¢ǊǳŜΣ ōȅҐbƻƴŜύ

Example:
import pandas as pd
import numpy as np
df = pd.DataFrame({'A': ['John', 'Boby', 'Mina', 'Peter', 'Nicky'],
 'B': ['Masters', 'Graduate', 'Graduate', 'Masters', 'Graduate'],
 'C': [27, 23, 21, 23, 24]})
x=df.reindex([10,20,30,40,50])
print("Re-indexing data frame:\n",x)
y=df.sort_index()
print("Result of Y: \n",y)

[6]

Re-indexing data frame:
 A B C
10 NaN NaN NaN
20 NaN NaN NaN
30 NaN NaN NaN
40 NaN NaN NaN
50 NaN NaN NaN

Result of Y:
 A B C
0 John Masters 27
1 Boby Graduate 23
2 Mina Graduate 21
3 Peter Masters 23
4 Nicky Graduate 24

1.1.3 AGGREGATION

Data frame aggregate() function is used to apply some aggregation across one or more columns.
Aggregate, using callable, string, dictionary, or list of string/callable. Most frequently used
aggregations are:

sum(): Returns the sum of the values for the requested axis

min(): Returns the minimum of the values for the requested axis

max(): Returns the maximum of the values for the requested axis

count() : Returns the number of characters present.

mode() : Returns the most frequently occurring number found in a set of numbers.

mean() : Returns the arithmetic mean, also called the mathematical expectation or average, is

the central value of a discrete set of numbers: specifically, the sum of the values
divided by the number of values.

median() : Returns the value separating the higher half from the lower half of a data sample (a

population or a probability distribution). For a data set, it may be thought of as the
 "middle" value.

quantile() : Returns the probability distribution of values. Quantile statistics is a part of a data set.

It is used to describe data in a clear and understandable way. The 0,30 quantile is
basically saying that 30% of the observations in our data set is below a given line. On
the other hand ,it is also stating that there are 70% remaining above the line we set.

var (): Returns the calculated variance (ů2), is a measurement of the spread between
numbers in a data set. It measures how far each number in the set is from the mean
and is calculated by taking the differences between each number in the set and the
mean, squaring the differences (to make them positive) and dividing the sum of the

 squares by the number of values in the set.

[7]

Example:
import pandas as pd
import numpy as np
df = pd.DataFrame({'A': ['John', 'Boby', 'Mina', 'Peter', 'Nicky'],
 'B': ['Masters', 'Graduate', 'Graduate', 'Masters', 'Graduate'],
 'C': [27, 23, 21, 23, 24]})

r1=df['C'].max()
print("Maximum: ",r1)

r2=df['C'].min()
print("Minimum: ",r2)

r3=df['C'].sum()
print("Sum: ",r3)

r4=df['A'].count()
print("Count: ",r4)

r5=df['C'].mean()
print("Mean: ",r5)

r6=df['C'].mode()
print("Mode: \n",r6)

r7=df['C'].median()
print("Median: \n",r7)

r8=df['C'].var()
print("Variance: \n",r8)

df1 = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), columns=['a', 'b'])
r9= df1.quantile()
print("Quantile: \n",r9)

Output:
Maximum: 27
Minimum: 21
Sum: 118
Count: 5
Mean: 23.6
Mode: 0 23
 dtype: int64

Median: 23.0
Variance: 4.8
Quantile:
a 2.5
b 55.0
 Name: 0.5, dtype: float64

[8]

1.2 HISTOGRAM:

A histogram is an accurate graphical representation of the distribution of numerical data. It is an

estimate of the probability distribution of a continuous variable (quantitative variable) and was first

introduced by Karl Pearson. It is a kind of bar graph. To construct a histogram, the first step is to

ñbinò the range of values ð that is, divide the entire range of values into a series of intervals ð

and then count how many values fall into each interval. The bins are usually specified as

consecutive, non-overlapping intervals of a variable. The bins (intervals) must be adjacent, and

 are often (but are not required to be) of equal size.

Histogram in Python:

Drawing a histogram in Python is very easy. All we have to do is code for 3-4 lines of code. But

complexity is involved when we are trying to deal with live data for visualization.

To draw histogram in python following concepts must be clear.

Title ïTo display heading of the histogram.

Colour ï To show the colour of the bar.

Axis: y-axis and x-axis.

Data: The data can be represented as an array.

Height and width of bars. This is determined based on the analysis.

The width of the bar is called bin or intervals.

Border colour ïTo display border colour of the bar.

Program in python.Develop a python program with below code and execute it.

import pandas as pd
import matplotlib.pyplot as plt
x={"AvMark": [90,95,95, 93,
94,78,69,85,74,86,75,79,98]}
df=pd.DataFrame(x)
print(df)
df.hist()
plt.show()

 AvMark
0 90
1 95
2 95
3 93
4 94
5 78
6 69
7 85
8 74
9 86

[9]

10 75
11 79
12 98

Histogram on array of data of Pivot Table (Pandas)

import pandas as pd
import matplotlib.pyplot as plt
data={"Agent": ["Agent1", "Agent2", "Agent3", "Agent1", "Agent3", "Agent4"], "Category":[1,2,3,4,5,6],
"Sales":[200, 175, 180, 165, 160, 170]}
df=pd.DataFrame(data)
pt=pd.pivot_table(df, index=["Agent"], values=["Sales"])
print(df)
pt.hist()
plt.show()

 Agent Category Sales
0 Agent1 1 200
1 Agent2 2 175
2 Agent3 3 180
3 Agent1 4 165
4 Agent3 5 160
5 Agent4 6 170

1.2.2 QUANTILE:

¢ƘŜ ǿƻǊŘ άǉǳŀƴǘƛƭŜέ ŎƻƳŜǎ ŦǊƻƳ ǘƘŜ ǿƻǊŘ quantity, means, a quantile is where a sample is divided into
equal-ǎƛȊŜŘ ƻǊ ǎǳōƎǊƻǳǇǎ όǘƘŀǘΩǎ ǿƘȅ ƛǘΩǎ ǎƻƳŜǘƛƳŜǎ ŎŀƭƭŜŘ ŀ άŦǊŀŎǘƛƭŜάύΦ {ƻ ǘƘŀǘΩǎ why, It can also refer to
dividing a probability distribution into areas of equal probability.

The median is a kind of quantile; the median is placed in a probability distribution at center so that exactly
half of the data is lower than the median and half of the data is above the median. The median cuts a
distribution into two equal parts and so why sometimes it is called 2-quantile.

Quartiles are quartiles; when they divide the distribution into four equal parts. Defiles are quantiles that
divide a distribution into 10 equal parts and Percentiles when that divides a distribution into 100 equal
parts.

For example, suppose A-B is a line, whose midpoint is C, so C is the Median of 2-qualantiles A-C and C-B.
Again midpoint of A-C is D, and midpoint of C-B is E. Now D, C & E are 3 Quantiles i.e. 25th, 50th and 75th
percentile respectively.

Finding Quantiles:

[10]

Question: Find the number in the following set of data where 30 percent of values fall below it, and 70 per
cent fall above it:
2 4 5 7 9 11 12 17 19 21 22 31 35 36 45 44 55 68 79 80 81 88 90 91 92 100 112 113 114 120 121 132 145
148 149 152 157 170 180 190
Step 1: Order the data from smallest to largest. The data in the question is already in ascending order.
Step 2: Count how many observations you have in your data set. This particular data set has 40 items.

Step 3: Convert any percentage to a decimal foǊ άǉέΦ ²Ŝ ŀǊŜ ƭƻƻƪƛƴƎ ŦƻǊ ǘƘŜ ƴǳƳōŜǊ ǿƘŜǊŜ ол ǇŜǊ ŎŜƴǘ ƻŦ
the values fall below it, so convert that to 0.3
Step 4: Insert your values into the formula:
ith observation = q (n + 1)
ith observation = .3 (40 + 1) = 12.3

Answer: The ith observation is at 12.3, so we round down to 12 (remembering that this formula is an
estimate). The 12th number in the set is 31, which is the number where 30 pre-cent of the values falls
below it.

Finding Quantile in Python:

import pandas as pd
import numpy as np
s = pd.Series([1, 2, 4, 5,6,8,10,12,16,20])
r=s.quantile(.3) #30% quantile
print(r)

OUTPUT:
4.699999999999999
Note ς It returns 30% quantile

To Find Quantiles in python In pandas dataframe object->

import pandas as pd
import numpy as np
df = pd.DataFrame(np.array([[11, 1], [12, 10], [13, 100], [14, 100], [15, 1000]]), columns=['a', 'b'])
r=df.quantile(.2) #20% quantile
print(r)

OUTPUT:
a 11.8
b 8.2
Name: 0.2, dtype: float64Note ς It returns 20% quantile

1.2 Function Applications:

1.2.1 pipe():

[11]

Pipe() function performs the operation for the entire dataframe with the help of user defined or
library function. In below example we are using pipe() Function to add 5 value to the entire
dataframe. e.g. program.

import pandas as pd
import numpy as np
import math
def adder(adder1,adder2):

return adder1+adder2
d = {'science_marks':pd.Series([22,55,63,85,47]), 'english_marks':pd.Series([89,87,67,55,47])}
df = pd.DataFrame(d)
df1=df.pipe(adder,5)
print (df1)

OUTPUT

science_marks english_marks

0 27 94
1 60 92
2 68 72
3 90 60
4 52 52

Basic idea behind pipe() function is like,we want to apply a function to a data frame or series, to
then apply other, other, é It will be sandwich like structure: df = fun3(fun2(fun1(df, arg1= 1),
arg2= 2), arg3=3) In essence here we want is pipelining just similar to chaining.

import pandas as pd

import numpy as np

import math

def adder(adder1,adder2):

 return adder1+adder2

def divide(adder1,adder2):

 return adder1/adder2

d = { 'science_marks' :pd.Series([22, 55]), 'english_marks' :pd.Series([89, 87])}

df = pd.DataFrame(d)

print (df)

df1=df.pipe(adder, 5)

df2=df.pipe(divide, 2)

print ("After Adder function \ n")

print (df1)

print ("After Divide function \ n")

print (df2)

 science_marks english_marks
0 22 89
1 55 87

[12]

After Adder function

 science_marks english_marks
0 27 94
1 60 92

After Divide function

 science_marks english_marks
0 11.0 44.5
1 27.5 43.5

1.2.2 apply() :

Row wise Function in python pandas of a pply()
apply() function performs the operation over Row wise Function in python pandas :

import pandas as pd
import numpy as np
import math
d = {'science_marks':pd.Series([22,55]), 'english_marks':pd.Series([89,87])}
df = pd.DataFrame(d)
print(df)
r=df.apply(np.mean,axis=1)
print (r)

OUTPUT
science_marks english_marks
0 22 89
1 55 87

0 55.5
1 71.0 dtype: float64

Column wi se Function in python pandas of a pply()

import pandas as pd
import numpy as np
import math
d = {'science_marks':pd.Series([22,55]), 'english_marks':pd.Series([89,87])}
df = pd.DataFrame(d)
print(df)
r=df.apply(np.mean,axis=0)
print (r)

OUTPUT
 science_marks english_marks
0 22 89
1 55 87
science_marks 38.5
english_marks 88.0
dtype: float64

Element wise Function Application in python pandas of applymap()

applymap() Function performs the specified operation for all the elements the dataframe.

import pandas as pd

[13]

import numpy as np
import math
d = {'science_marks':pd.Series([22,55]), 'english_marks':pd.Series([89,87])}
df = pd.DataFrame(d)
print(df)
r=df.applymap(lambda x:x+2)
print (r)

OUTPUT
 science_marks english_marks
0 22 89
1 55 87
 science_marks english_marks
0 24 91
1 57 89

lambda: For onetime use of a function, for example:
func=lambda x,y : x+y
print(func(5,3))

8

1.2.3 Aggregation() [group by function]

Data aggregation- Aggregation is the process of finding the values of a dataset (or a subset of it)
into one single value. Let us go through the DataFrame likeé

DATA OF DATAFRAME:
 name age weight height runsscored
0 vishal 15 51 5.1 55
1 anil 16 48 5.2 25
2 mayur 15 49 5.1 71
3 viraj 17 51 5.3 53
4 mahesh 16 48 5.1 51

éthen a simple aggregation method is to calculate the sum of the runs scored, which is
55+25+71+53+51=255. Or a different aggregation method would be to count the number of the
name, which is 5. So the aggregation is not too complicated. Letôs see the rest in practice.

Pandas Data Aggregation #1: .count()

from collections import OrderedDict

from pandas import DataFrame

import pandas as pd

import numpy as np

table = OrderedDict((

("name", ['vishal' , 'anil' , 'mayur' , 'viraj' , 'mahesh']),

('age' ,[15, 16, 15, 17, 16]),

('weight' , [51, 48, 49, 51, 48]),

('height' , [5.1 , 5.2 , 5.1 , 5.3 , 5.1]),

('runsscored' , [55, 25, 71, 53, 51])

))

d = DataFrame(table)

[14]

print ("DATA OF DATAFRAME")

print (d)

print (d.count())

print ("total names in dataframe are" ,d.name.count())

DATA OF DATAFRAME
 name age weight height runsscored
0 vishal 15 51 5.1 55
1 anil 16 48 5.2 25
2 mayur 15 49 5.1 71
3 viraj 17 51 5.3 53
4 mahesh 16 48 5.1 51

name 5
age 5
weight 5
height 5
runsscored 5
dtype: int64
total names in dataframe are 5

Pandas Data Aggregation #2: .sum()

from collections import OrderedDict

from pandas import DataFrame

import pandas as pd

import numpy as np

table = OrderedDict((

("name", [' Vishal' , ' Anil' , ' Mayur' , ' Viraj' , ' Mahesh']),

('age' ,[15, 16, 15, 17, 16]),

('weight' , [51, 48, 49, 51, 48]), ('height' , [5.1 , 5.2 , 5.1 , 5.3 , 5.1]),

('runsscored' , [55, 25, 71, 53, 51])

))

d = DataFrame(table)

print ("DATA OF DATAFRAME")

print (d)

print (d. sum())

print ("Sum of Score:" ,d.runsscored. sum())

DATA OF DATAFRAME
 name age weight height runsscored
0 Vishal 15 51 5.1 55
1 Anil 16 48 5.2 25
2 Mayur 15 49 5.1 71
3 Viraj 17 51 5.3 53
4 Mahesh 16 48 5.1 51

name VishalAnilMayurVirajMahesh
age 79

[15]

weight 247
height 25.8
runsscored 255
dtype: object
Sum of Score: 255
note:- count() function can be used directly with dataframe or with the specific field of data frame

Pandas Data Aggregation #3 and #4: .min() and .max()

from collections import OrderedDict

from pandas import DataFrame

import pandas as pd

import numpy as np

table = OrderedDict((

("name", ['vishal' , 'anil' , 'mayur' , 'viraj' , 'mahesh']),

('age' ,[15, 16, 15, 17, 16]),

('weight' , [51, 48, 49, 51, 48]), ('height' , [5.1 , 5.2 , 5.1 , 5.3 , 5.1]),

('runsscored' , [55, 25, 71, 53, 51])

))

d = DataFrame(table)

print ("DATA OF DATAFRAME")

print (d)

print (d. max())

print (d. min())

print ("Maximum score is: " , d.runsscored. max())

print ("Minimum score is: " , d.runsscored. min())

nm1=d.name[d['runsscored'].idxmax()]

nm2=d.name[d['runsscored'].idxmin()]

print ("Maximum scorer is : " ,nm1)

print ("Minimum scorer is : " ,nm2)

DATA OF DATAFRAME

name vishal

age 17

weight 51

height 5.3

runsscored 71

dtype: object

name anil

age 15

weight 48

height 5.1

runsscored 25

dtype: object

Maximum score is: 71

Minimum score is: 25

Maximum scorer is: mayur

[16]

Minimum scorer is: anil

Pandas Data aggregation #5 and #6: .mean() and .median()

from collections import OrderedDict

from pandas import DataFrame

import pandas as pd

import numpy as np

table = OrderedDict((

("name", ['vishal' , 'anil' , 'mayur' , 'viraj' , 'mahesh']),

('age' ,[15, 16, 15, 17, 16]),

('weight' , [51, 48, 49, 51, 48]),

('height' , [5.1 , 5.2 , 5.1 , 5.3 , 5.1]),

('runsscored' , [55, 25, 71, 53, 51])

))

d = DataFrame(table)

print ("DATA OF DATAFRAME")

print (d)

print ("Mean value of the score is" , d.runsscored.mean())

print ("Median value of the score is" , d.runsscored.median())

DATA OF DATAFRAME
 name age weight height runsscored
0 vishal 15 51 5.1 55
1 anil 16 48 5.2 25
2 mayur 15 49 5.1 71
3 viraj 17 51 5.3 53
4 mahesh 16 48 5.1 51
Mean value of the score is: 51.0
Median value of the score is: 53.0

For Data Analysis we will probably do segmentations many times. For instance, itôs nice to
know the max for all age groups, then grouping is to be done for each age value(group).
e.g. given below.

from collections import OrderedDict
from pandas import DataFrame
import pandas as pd
import numpy as np

table = OrderedDict((
("name", ['vishal', 'anil', 'mayur', 'viraj','mahesh']),
('age',[15, 16, 15, 17,16]),
('weight', [51, 48, 49, 51,48]),
('height', [5.1, 5.2, 5.1, 5.3,5.1]),
('runsscored', [55,25, 71, 53,51])
))
d = DataFrame(table)
print("DATA OF DATAFRAME")
print(d)
print(d.groupby('age').max())
DATA OF DATAFRAME
 name age weight height runsscored

[17]

0 vishal 15 51 5.1 55
1 anil 16 48 5.2 25
2 mayur 15 49 5.1 71
3 viraj 17 51 5.3 53
4 mahesh 16 48 5.1 51

 name weight height runsscored
age
15 vishal 51 5.1 71
16 mahesh 48 5.2 51
17 viraj 51 5.3 53

for individual column value we can use stmt like print(d.groupby('age').max().name)

1.2.4. transform()

Transform is an operation used in conjunction with groupby. It is used in given
pattern. Dataframe -> grouping -> aggregate function on each group value -> then
transform that value in each group value.

from collections import OrderedDict

from pandas import DataFrame

import pandas as pd

import numpy as np

table = OrderedDict((

("name", ['vishal', 'anil', 'mayur', 'viraj','mahesh']),('age',[15, 16, 15, 17,16]),

('weight', [51, 48, 49, 51,48]),

('height', [5.1, 5.2, 5.1, 5.3,5.1]),

('runsscored', [55,25, 71, 53,51])

))

d = DataFrame(table)

print("DATA OF DATAFRAME")

print(d)

print(d.groupby('age')["runsscored"].transform('sum'))

DATA OF DATAFRAME
 name age weight height runsscored
0 vishal 15 51 5.1 55
1 anil 16 48 5.2 25
2 mayur 15 49 5.1 71
3 viraj 17 51 5.3 53
4 mahesh16 48 5.1 51

0 126
1 76
2 126
3 53
4 76

[18]

Name: runsscored, dtype: int64

1.3.1 Re-Indexing:

It is a fundamental operation over pandas series or dataframe.It is a process that makes the data

in a Series/data frame conforms to a set of labels. It is used by pandas to perform much of the

alignment process. Reindex in python pandas or change the order of the rows and column in

python pandas dataframe or change the order of data of series object is possible with the help of

reindex() function.

E.g. Given below for series- first column is label (as index) and second column for value

a 54 >--- After Reindex ---> e 34
b 76 d 99
c 88 c 88
d 99 b 76
e 34 a 54

The program given below creates a pandas series with some numeric values then index it with

a,b,c,d,e labels,then after index is changed to e,d,c,b,a with the help of reindex() function.

import pandas as pd
import numpy as np
data = np.array([54,76,88,99,34])
s1 = pd.Series(data,index=['a','b','c','d','e'])
print (s1)
s2=s1.reindex(['e','d','c','b','a'])
print(s2)

OUTPUT
a 54
b 76
c 88
d 99
e 34 dtype: int32

e 34
d 99
c 88
b 76
a 54 dtype: int32

1.3.2 Re-indexing pandas series without label

Reindex Insert NaN markers where no data exists for a label.In below program f,g are not
available as label.

import pandas as pd
import numpy as np
data = np.array([54,76,88,99,34])
s1 = pd.Series(data,index=['a','b','c','d','e'])
print (s1)
s2=s1.reindex(['f','g','c','b','a'])
print(s2)

[19]

OUTPUT

a 54
b 76
c 88
d 99
e 34
dtype: int32
f NaN
g NaN
c 88.0
b 76.0
a 54.0
dtype: float64

1.3.3 Altering Series Label

import pandas as pd
import numpy as np
data = np.array([54,76,88,99,34])
s1 = pd.Series(data,index=['a','b','c','d','e'])
print (s1)
s2=s1.rename(index={'a':0, 'b':1})
print(ñAfter reindexing: \nñ, s2)

OUTPUT

a 54
b 76
c 88
d 99
e 34
dtype: int32

After reindexing:
0 54
1 76
c 88
d 99
e 34
dtype: int32

1.3.5 Re-indexing Rows in Pandas Dataframe:

from collections import OrderedDict
from pandas import DataFrame
import pandas as pd
import numpy as np
table = OrderedDict((
("name", ['vishal', 'anil', 'mayur', 'viraj','mahesh']),('age',[15, 16, 15, 17,16]),
('weight', [51, 48, 49, 51,48]),

[20]

('height', [5.1, 5.2, 5.1, 5.3,5.1]),
('runsscored', [55,25, 71, 53,51])
))
d = DataFrame(table)
print("DATA OF DATAFRAME")
print(d)
print("DATA OF DATAFRAME AFTER REINDEX")
df=d.reindex([2,1, 0,4,3])
print(df)

1.3.6 Re-Indexing Columns in Pandas Data Frame:

from collections import OrderedDict
from pandas import DataFrame
import pandas as pd
import numpy as np
table = OrderedDict((
("name", ['vishal', 'anil', 'mayur',
'viraj','mahesh']),
('age',[15, 16, 15, 17,16]),
('weight', [51, 48, 49, 51,48]),
('height', [5.1, 5.2, 5.1, 5.3,5.1]),
('runsscored', [55,25, 71, 53,51])
))
d = DataFrame(table)
print("DATA OF DATAFRAME")
print(d)
print("DATA OF DATAFRAME AFTER REINDEX")
df=d.reindex(columns=['name','runsscored','age'])
print(df)

 1.3.7 Adding & Deleting a Column to/of DataFrame:
import pandas as pd
data={ óRollô : [1,2,3,4,5], óClassô: [9, 10,11,12] }
df=pd.DataFrame(data)
sec=[óAô, óBô, óCô, óDô]
df[óSectionô]=sec # Adding c olumn óSectionô to df
df.drop(óClassô, axis=1) # Removes column óClassô from df
df.pop(óSectionô) # Removes column óSectionô from df

1.3.8 Adding & Removing a Row to/of DataFrame:

[21]

import pandas as pd
data={ óRollô : [1,2,3,4,5], óClassô: [9, 10,11,12], óSectionô: [óAô, óBô, óCô, óDô] }
df=pd.DataFrame(data, index=[óaô,ôbô,ôcô,ôdô])
df=df.drop(óaô, axis=0) # Removes a row of index óaô from df
df=df.append({óRollô : 6, óClassô : 8, óSectionô: óEô}) # Adds a row to df

 1.3.9 Renaming a Column of DataFrame:
import pandas as pd
data={ óRollô : [1,2,3,4,5,6], óClassô: [8, 9, 10,11,12], óSectionô: [óAô, óBô, óCô, óDô, óEô] }
df=pd.DataFrame(data, index=[óaô,ôbô,ôcô,ôdô,ôe])

ŘŦҐǇŘΦǊŜƴŀƳŜόŎƻƭǳƳƴǎҐϑΨwƻƭƭΩ Υ Ψwh[[bhΩΣ Ψ/ƭŀǎǎΩΥ Ψ/[!{{9{Ωύ # Renamed 2 columns

1.3.10 Altering DataFrame Labels :

from collections import OrderedDict
from pandas import DataFrame
import pandas as pd
import numpy as np
table = OrderedDict((
("name", ['vishal', 'anil', 'mayur', 'viraj','mahesh']),
('age',[15, 16, 15, 17,16]),
('weight', [51, 48, 49, 51,48]),
('height', [5.1, 5.2, 5.1, 5.3,5.1]),
('runsscored', [55,25, 71, 53,51])
))
d = DataFrame(table)
print("DATA OF DATAFRAME")
print(d)
print("DATA OF DATAFRAME AFTER REINDEX")
df=d.rename(index={0:'a',1:'b'})
print(df)

[2] Numeric Python (NumPy)

NumPy stands for Numerical Python. It is the core library for scientific computing in

Python. It consist of multidimensional array objects, and tools for working with these

arrays.

Numpy Array is a grid of values with same type, and is indexed by a tuple of nonnegative

integers. The number of dimensions of it, is the rank of the array; the shape of an array

depends upon a tuple of integers giving the size of the array along each dimension.

2.1 1D-ARRAY

[22]

Any arrays can be single or multidimensional. The number of subscript/index determines

dimensions of the array. An array of one dimension is known as a one-dimensional array

or 1-D array

In above diagram num is an array, itôs first element is at 0 index position, next element is

at 1 and so

on till last

element at n-

1 index

position. At 0

index

positions

value is 2 and

at 1 index

position value

is 5.

import numpy as np
a = np.array([500, 200, 300]) # Create a 1D Array
print(type(a)) # Prints "<class 'numpy.ndarray'>"
print(a.shape) # Prints "(3,)" means dimension of array
print(a[0], a[1], a[2]) # Prints "500 200 300"
a[0] = 150 # Change an element of the array
print(a)

 500 200 300
[150 200 300]

2.1.1 Creation of 1D array Using functions :

import numpy as np
p = np.empty(5) # Create an array of 5 elements with random values
print(p)
a1 = np.zeros(5) # Create an array of all zeros float values
print(a1) # Prints "[0. 0. 0. 0. 0.]"
a2 = np.zeros(5, dtype = np.int) # Create an array of all zeros int values
print(a2) # Prints "[0. 0. 0. 0. 0.]"
b = np.ones(5) # Create an array of all ones
print(b) # Prints "[1. 1. 1. 1. 1.]"
c = np.full(5, 7) # Create a constant array
print(c) # Prints "[7 7 7 7 7]"
e = np.random.random(5) # Create an array filled with random values
print(e)

[23]

Output:

[0. 0. 0. 0. 0.]
[0 0 0 0 0]
[1. 1. 1. 1. 1.]
[7 7 7 7 7]
[0.09046076 0.72398345 0.50489953 0.93995651 0.5038687]

NUMPY ARRAY LIST

Numpy Array works on Python list are made for

Homogeneous types Heterogeneous types

Python list support adding and removing of
elements

NumPy.Array does not support adding
and removing of elements

Canôt contain elements of different types Can contain elements of different types

Smaller memory consumption More memory consumption

Better runtime Runtime not speedy

2.1.2 Creat ing 1D Array from String :

Note:- in from string dtype and step argument can be changed. Create 1D from buffer numpy
array from range numpy.arange (start, stop, step, dtype)

import numpy as np
data =np.fromstring('1 2', dtype=int, sep=' ')
print(data)

[1 2]

#program 1
import numpy as np
x = np.arange(5) #for float value specify dtype = float as argument
print(x) #print [0 1 2 3 4]

[0 1 2 3 4]

#program 2
import numpy as np
x = np.arange(10,20,2)
print (x) #print [10 12 14 16 18]

[10 12 14 16 18]

2.1.3 Create 1D Array from an Array

Copy function is used to create the copy of the existing array.

[24]

import numpy as np
x = np.array([1, 2, 3])
y = x
z = np.copy(x)
x[0] = 10
print(x)
print(y)
print(z)

Output:
[10 2 3]
[10 2 3]
[1 2 3]

Note: When we modify x, y changes, but not z:

2.1.4 Re-Indexing of Array:

import numpy as np
Create a sequence of integers from 10 to 1 with a step of -2
a = np.arange(10, 1, -2)
print("\n A sequential array with a negative step: \n",a)
Indexes are specified inside the np.array method.
newarr = a[np.array([3, 1, 2])]
print("\n Elements at these indices are:\n",newarr)
Output:
A sequential array with a negative step:
 [10 8 6 4 2]

 Elements at these indices are:
 [4 8 6]

2.1.5 Slicing of numpy 1D array e lements

import numpy as np
data = np.array([5,2,7,3,9])
print (data[:]) #print [5 2 7 3 9]
print(data[1:3]) #print [2 7]
print(data[:2]) #print [5 2]
print(data[-2:]) #print [3 9]

Output:
[5 2 7 3 9]
[2 7]
[5 2]
[3 9]

2.1.6 Joining of two or more 1D ar ray is possible with concatenate () function

import numpy as np
a = np.array([1, 2, 3])
b = np.array([5, 6])

[25]

c=np.concatenate([a,b,a])
print(c) #print [1 2 3 5 6 1 2 3]

Output:
[1 2 3 5 6 1 2 3]

2.1.7 Print all subsets of a 1D A rray

If A {1, 3, 5}, then all the possible subsets of A are { }, {1}, {3}, {5}, {1, 3}, {3, 5}

import pandas as pd
import numpy as np
def sub_lists(list1):
 sublist = [[]]
 for i in range(len(list1) + 1):
 for j in range(i + 1, len(list1) + 1):
 sub = list1[i:j]
 sublist.append(sub)
 return sublist
x = np.array([1,2,3,4])
print(sub_lists(x))

Output:
[[], array([1]), array([1, 2]), array([1, 2, 3]), array([1, 2, 3, 4]), array([2]), array([2, 3]), array([2, 3, 4]),
array([3]), array([3, 4]), array([4])]

2.1.8 Basic arithmetic operation on 1D Array:

import numpy as np
x = np.array([1, 2, 3,4])
y = np.array([1, 2, 3,4])
z=x+y
print(z) #print [2 4 6 8]
z=x-y
print(z) #print [0 0 0 0]
z=x*y
print(z) #print [1 4 9 16] z=x/y
print(z) #print [1. 1. 1. 1.] z=x+1
print(z) #print [2 3 4 5]

Output :
[2 4 6 8]
[0 0 0 0]
[1 4 9 16]
[1 4 9 16]
[1 4 9 16]

.9 Aggregate operation on 1D Array: 2.1

import numpy as np
x = np.array([1, 2, 3,4])

[26]

print(x.sum()) #print 10
print(x.min()) #print 1
print(x.max()) #print 4
print(x.mean()) #print 2.5
print(np.median(x)) #print 2.5

Output :
10
1
4
2.5
2.5

2.2 2-D ARRAY

In this diagram num is an array of two dimensions with 3 rows and 4 columns. Subscripts

of rows are 0 to 2 and columns are 0 to 3.

Two dimension (2D) arrays can be created using array method with list object with two

dimensional elements.

import numpy as np
a = np.array([[3, 2, 1],[1, 2, 3]]) # Create a 2D Array
print(type(a)) # Prints "<class 'numpy.ndarray'>"
print(a.shape) # Prints (2, 3)
print(a[0][1]) # Prints 2
a[0][1] = 150 # Change an element of the array
print(a) # prints [[3 150 1] [1 2 3]]

(2, 3)
2
[[3 150 1]
 [1 2 3]]

2.2.1 Creation of 2D array using functions

import numpy as np

[27]

p = np.empty([2,2]) # Create an array of 4 elements with random values print(p)
a1 = np.zeros([2,2]) # Create 2d array of all zeros float values
print(a1) # Prints [[0. 0.][0. 0.]]
a2 = np.zeros([2,2], dtype = np.int) # Create an array of all zeros int values
print(a2) # Prints [[0 0] [0 0]]
b = np.ones([2,2]) # Create an array of all ones print(b) # Prints [[1. 1.] [1. 1.]]
c = np.full([2,2], 7) # Create a constant array
print(c) # Prints [[7 7] [7 7]]
e = np.random.random([2,2])
print(e)

[[0. 0.]
 [0. 0.]]
[[0 0]
 [0 0]]
[[7 7]
 [7 7]]
[[0.07437496 0.77750505]
 [0.93994719 0.04418107]]

2.2.2 Creation of 2D array from 1D array using reshape () function.

import numpy as np
A = np.array([1,2,3,4,5,6])
B = np.reshape(A, (2, 3))
print(B)

[[1 2 3]
 [4 5 6]]

2.2.3 2D ARRAY SLICES

Example-1:
import numpy as np
A = np.array([
[7, 5, 9, 4],
[7, 6, 8, 8],
[1, 6, 7, 7]])
print(A[:2, :3]) #prints elements of 0,1 rows and 0,1,2 columns
print(A[:3, ::2]) #prints elements of 0,1,2 rows and alternate column position
print(A[::-1, ::-1]) #prints elements in reverse order
print(A[:, 0]) #prints all elements of 0 column
print(A[0, :]) #prints all elements of 0 rows
print(A[0]) #prints all elements of 0 row

[[7 5 9]
 [7 6 8]]
[[7 9]
 [7 8]
 [1 7]]
[[7 7 6 1]
 [8 8 6 7]
 [4 9 5 7]]
[7 7 1]
[7 5 9 4]
[7 5 9 4]

[28]

Example-2:
import numpy as np
a2 = np.array([[10, 11, 12, 13, 14],
 [15, 16, 17, 18, 19],
 [20, 21, 22, 23, 24],
 [25, 26, 27, 28, 29]])
print(a2[1: , 2:4])
print("<====================>")
print(a2[1:3,1:])

Output:

[[17 18]
 [22 23]
 [27 28]]
<====================>
[[16 17 18 19]
 [21 22 23 24]]

2.2.4

import numpy as np
A = np.array([[7, 5], [1, 6]])
print(np.concatenate([A, A]))
print(np.concatenate([A, A], axis=1))
x = np.array([1, 2])
print(np.vstack([x, A]))
y = np.array([[99], [99]])
print(np.hstack([A, y]))

[[7 5]
 [1 6]
 [7 5]
 [1 6]]
[[7 5 7 5]
 [1 6 1 6]]
[[1 2]
 [7 5]
 [1 6]]
[[7 5 99]
 [1 6 99]]

2-D ARRAY ï ARITHMATIC OPERATION with add, substract, multiply, divide () 2.2.5
functions.

import numpy as np
a = np.array([[7, 5, 9], [2, 6, 8]])
print(a)
b = np.array([10,10,10])
c=np.add(a,b)
print(c)

c=np.subtract(a,b)
c=np.multiply(a,b)
c=np.divide(a,b)

[29]

print(c)

[[7 5 9]
 [2 6 8]]

[[17 15 19]
 [12 16 18]]

[[0.7 0.5 0.9]
 [0.2 0.6 0.8]]

Note:

¶ If both 2d arrays are with same dimension [matrix form] then one to one arithmetic
operation will be performed.

¶ No of elements of a dimension must match otherwise error message thrown.

2-D Array Maths functions li ke power, abs, ceil, floor, around and trigonometric 2.2.6
functions like sin, cos, tan, asin etc. are supported by numpy

import numpy as np
a = np.array([[7.333, 5.223], [2.572, 6.119]])
print(np.power(a,2))
print(np.ceil(a))
print(np.floor(a))
print(np.around(a,1))

[[53.772889 27.279729]
 [6.615184 37.442161]]

[[8. 6.]
 [3. 7.]]

[[7. 5.]
 [2. 6.]]

[[7.3 5.2]
 [2.6 6.1]]

2D ARRAY: identity () 2.2.7

numpy.identy(n, dtype=None) Returns an identity matrix i.e. a square matrix with ones on the
main diagonal, where n is int type nxn dimension array and dtype is an optional float data type
return array.

Example:
import numpy as np
b=np.identity(2, dtype=float)
print(ñMatrix b :\nò, b
a=np.identity(4)
print(ñ\n Matrix a: \nò, a)

OUTPUT:
Matrix b :
[[1. 0.]
 [0. 1.]]

[30]

Matrix a:
[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]]

2-D ARRAY: random.radint() 2.2.8

numpy.random.randint(low, high=None, sixe=None, dtype=ôlô) is one of the function for doing
random sampling, that returns an array of specified shape and fills it with random integers from
low (inclusive) to high (exclusive) which is optional, i.e. in the interval (low, high), and dtype is
optional.

Example:
import numpy as np
r1=np.random.randint(low=0, high=3, size=5)
r2=np.random.randint(low=4, size=(2,3))
print(ñOutput 1D Array : ñ, r1)
print(ñOutput 2D Array : \nñ, r2)

OUTPUT:
Output 1D Array: [1 1 0 1 1]
Output 2D Array:
 [[1 1 0]
 [1 0 3]]

2-D ARRAY VARIANCE: The average of the squared differences from the Mean. 2.2.9

STEPS:
1. Find the mean of values
2. Subtract value with mean value then square the result, sum all results of each value
3. Find the average of sum value

import numpy as np
b = np.array([600,470,170,430,300])
print(b.mean()) # prints 394.0
print(np.var(b,ddof=0)) # prints 21704.0

394.0
21704.0

NOTE :
Variance is calculated like (2062 + 762 + (ī224)2 + 362 + (ī94)2)/5 206=600-394 and so on for
other values

2-D ARRAY COVARIANCE 2.3.1

Covariance is a statistical measure that shows whether two variables are related by measuring
how the variables change in relation to each other.

Mathematical Formula:

[31]

In above calculation value of A is calculated by subtracting item1 price from item1 mean price so
on for B and all values. Covariance by dividing sum of AXB by n-1 (number of years)

import numpy as np
a = np.array([1000,1200,1600])
b = np.array([130,110,120])
print(np.cov(a,b,bias=True)[0,1])

-666.6666666666666

2-D ARRAY CORRELATION 2.3.2
Correlation is the scaled measure of covariance. Besides, it is dimensionless. In other words, the
correlation coefficient is always a pure value and not measured in any units.
Formula:

Cov(X,Y) ς the ŎƻǾŀǊƛŀƴŎŜ ōŜǘǿŜŜƴ ǘƘŜ ǾŀǊƛŀōƭŜǎ · ŀƴŘ ¸ ˋ· ς the standard deviation of the X-ǾŀǊƛŀōƭŜ ˋ¸ ς
the standard deviation of the Y-variable

Program:

 variance variance

YEAR ITEM1 PRICE ITEM2 PRICE A B AxB

2015 1000 130 -266.667 10 -2666.67

2016 1200 110 -66.6667 -10 666.6667

2017 1600 120 333.3333 10 3333.333

 1266.666667 120 1333.333

 covariance= 666.6667

[32]

import numpy as np
a = np.array([1000,1200,1600])
b = np.array([130,110,120])
print(np.corrcoef(a, b))
[[1. -0.32732684]
 [-0.32732684 1.]]

2-D ARRAY: Linear Regression 2.3.3

import numpy as np
import matplotlib.pyplot as plt def estcoefficients(x,y):
 n=np.size(x)
 meanx, meany = np.mean(x), np.mean(y)
 sy = np.sum(y*x - n*meany*meanx)
 sx = np.sum(x*x - n*meanx*meanx)
 a=sx/sy
 b=meany-a*meanx
 return(a,b)

def plotregline(x,y,b):
 plt.scatter(x,y,color="r",marker="o",s=30)
 ypred=b[0]+b[1]*x
 plt.plot(x,ypred,color="g")
 plt.xlabel('SIZE')
 plt.ylabel('COST')
 plt.show()
x=np.array([10,20,30,40,50]) # independent variable
y=np.array([400,800,1100,1700,2100]) # dependent variable
b=estcoefficients(x,y)
plotregline(x,y,b)

Matplotlib is the whole python package/ library used to create 2D graphs and plots by using python
scripts. pyplot is a module in matplotlib, which supports a very wide variety of graphs and plots namely -
histogram, bar charts, power spectra, error charts etc. It is used along with NumPy to provide an
environment for MatLab.

Pyplot provides the state-machine interface to the plotting library in matplotlib.It means that figures and

axes are implicitly and automatically created to achieve the desired plot. For example, calling plot from
pyplot will automatically create the necessary figure and axes to achieve the desired plot. Setting a title
will then automatically set that title to the current axes object.The pyplot interface is generally preferred
for non-interactive plotting (i.e., scripting).

[33]

Difference between a histogram and a bar chart / graph:
A bar chart majorly represents categorical data (data that has some labels associated with it), they are
usually represented using rectangular bars with lengths proportional to the values that they represent.
While histograms on the other hand, is used to describe distributions. Given a set of data, are their
distributions.

import numpy as np
import matplotlib.pyplot as plt
data = [1,11,21,31,41]
plt.hist([5,15,25,35,45, 55], bins=[0,10,20,30,40,50, 60], weights=[20,10,45,33,6,8],
edgecolor="red")
plt.show()

#first argument of hist() method is position (x,y Coordinate) of weight, where weight is to be displayed. No
of coordinates must match No of weight otherwise error will generate
#Second argument is interval
#Third argument is weight for bars
Creating Histogram on array of data in Pandas

[34]

3.1 Histogram in Python
For better understading we develop the same program with minor change .

import numpy as np
import matplotlib.pyplot as plt
data = [1,11,21,31,41]
plt.hist([5,15,25,35,15, 55], bins=[0,10,20,30,40,50,
60], weights=[20,10,45,33,6,8], edgecolor="red")
plt.show()

At interval(bin) 40 to 50 no bar because we have
not mentioned position from 40 to 50 in first
argument(list) of hist method. Where as in
interval 10 to 20 width is being Displayed as 16
(10+6 both weights are added) because 15 is twice
In first argument.

3.3 Frequency polygons: Program
If we just connect the top center points of each bin then we obtain relative frequency polygon.

import numpy as np
import matplotlib.pyplot as plt
data = [1,11,21,31,41]
plt.hist([5,15,25,35,15, 55], bins=[0,10,20,30,40,50, 60],

weights=[20,10,45,33,6,8], edgecolor="red", histtype='step')

#plt.hist(data, bins=20, histtype='step')
plt.xlabel('Value')
plt.ylabel('Probability')
plt.title('Histogram')
plt.show()

[35]

Note: Bin: In histogram total range of data set (minimum to maximum) is divided into 8 to 15
equal parts. These equal parts are known as Bins or class-intervals.

3.4 Box Plots: A Box Plot is the visual
representation of the statistical five number
summary of a given data set, which
includes:
ω aƛƴƛƳǳƳ
ω CƛǊǎǘ vǳŀǊǘƛƭŜ
ω aŜŘƛŀƴ ό{ŜŎƻƴŘ vǳŀǊǘƛƭŜύ
ω ¢ƘƛǊŘ vǳŀǊǘƛƭŜ
ω aŀȄƛƳǳƳ

3.4 Box Plots: Program

import matplotlib.pyplot as plt
value1 = [72,76,24,40,57,62,75,78,31,32]
value2=[62,5,91,25,36,32,96,95,30,90]
value3=[23,89,12,78,72,89,25,69,68,86]
value4=[99,73,70,16,81,61,88,98,10,87]box_plot_data=[value1,value2,value3,value4]
box=plt.boxplot(box_plot_data,vert=1, patch_ar tist=True, labels=['course1','course2','course3',' course4'],)
colors = ['cyan', 'lightblue', 'lightgreen',
'tan']
for patch, color in zip(box['boxes'], colors):
 patch.set_facecolor(color)
 plt.show()

Note:- if vert=0 in boxplot() is set then
horizontal box plots will be drawn

3.5 Scatter Plots: Program
A scatter plot is a two-dimensional data visualization
that uses dots to represent the values obtained for two
different variables - one plotted along the x-axis and
the other plotted along the y-axis.

import matplotlib.pyplot as plt
weight1=[93.3,67,62.3,43,71,71.8]
height1=[116.3,110.7,124.8,176.3,137.1,113.9]
plt.scatter(weight1,height1,c='b',marker='o')
plt.xlabel('weight', fontsize=16)
plt.ylabel('height', fontsize=16)
plt.title('scatter plot - height vs weight',fontsize=20)
plt.show()

[36]

3.6 PyPlot Application to display a line

import matplotlib.pyplot as plt
plt.grid() # Reformat the layout with grid
plt.plot([1,2,3,4,5]) # Generates or co-ordinates of the values in reference to Y-Axis
plt.show()

3.7 PyPlot application to display multiple lines

import matplotlib.pyplot as plt
plt.plot([2,4,6,8,10,12],[1, 2, 3, 4, 5, 4],'g') # Creates a line in ref to X-Axis & Y-Axis respectability of Green colourόΨƎΩύ

plt.plot([1,2,3,4,5,6],[1, 2, 3, 4, 5, 4], 'b') # Creates a line in ref to X-Axis & Y-Axis respectability of Blue colourόΨōΩύ

plt.grid() # Reformat the layout with grid
plt.title('My Pyplot') # Displays title of the layout at the top
plt.ylabel('some numbers') # Displays label of Y-Axis
plt.xlabel('values') # Displays label of X-Axis
plt.show()

[37]

3.8 Application of arrange() function:

import numpy as np
import matplotlib.pyplot as plt
x=np.arange(1,5,1)
plt.plot(x,'r') # ΨǊΩ ƳŀƪŜǎ ǊŜŘ ŎƻƭƻǳǊ ƻŦ ǘƘŜ ƭƛƴŜ generated according to value of x
plt.plot(x+1, 'y') І ΨȅΩ ƳŀƪŜǎ ȅŜƭƭƻǿ ŎƻƭƻǳǊ ƻŦ ǘƘŜ ƭƛƴŜ according to value of x+1
plt.plot(x+2, 'b') І ΨōΩ ƳŀƪŜǎ ōƭǳŜ ŎƻƭƻǳǊ ƻŦ ǘƘŜ ƭƛƴŜ according to value of x+2
plt.show()

Note:
arange(a,b,c): arange() function generates values from starting value(a) up to before stop value (b)
incremented by third value(c) which is optional. In the above example, [1, 2, 3, 4] values will be generated
for x variable, where initial value is 1, final is 5 and increment value is 1.

4.1 Software Engineering (SE)

SE is an engineering branch where main focus is given over the development of software product using

well defined scientific principal, procedures and methods.

SE is the process of analyzing user needs, designing, constructing, and testing end user applications that

will satisfy the needs of the user through the use of software programming language(s). As compared to

simple programming, software engineering is used for larger and more complex software systems, which

are used as critical systems for business or for any organization.

4.2 Software Processes:

A software process is the process of dividing software development work into different phases so that

software design is improved and product/project is easily managed. It is also known as a software

[38]

development process or software development life cycle.

It is a kind of structure imposed on the development of a software product. There is no ideal software

process. It depends upon the product, the organization where it is being developed and the user for whom

it is going to be developed.

4.3 Common fundamental activities of all software processes are as follows:

 ¶ Software specification - The functionality of the software and constraints on its operation are defined

under this activity.

 ¶ Software design and implementation ς Designing of software to meet the specification of software.

 ¶ Software validation - The software must be validated to meet the customer needs.

 ¶ Software evolution - The software must be developed in such manner that it can meet changing

customer needs.

4.4 SDLC (Software Development Life Cycle):

Given below are the various phases of SDLC:

¶ Requirement gathering and analysis

¶ Design

¶ Implementation or coding

¶ Testing

¶ Deployment

 Maintenance¶

1) Requirement Gathering and Analysis: During this phase, all the relevant information is collected from
the customer to develop a product as per their expectation. Any ambiguities must be resolved in this
phase only.

Business analyst and Project Manager set up a meeting with the customer to gather all the information
like what the customer wants to build, who will be the end-user, what is the purpose of the product.
Before building a product a core understanding or knowledge of the product is very important.

For Example: A customer wants to have an application which involves money transactions. In this case, the
requirement has to be clear like what kind of transactions will be done, how it will be done, in which
currency it will be done, etc.

Once the requirement gathering is done, an analysis
is done to check the feasibility of the development
of a product. In case of any ambiguity, a call is set up
for further discussion.

Once the requirement is clearly understood, the SRS
(Software Requirement Specification) document is
created. This document should be thoroughly
understood by the developers and also should be
reviewed by the customer for future reference.

2) Design: In this phase, the requirement gathered
in the SRS document is used as an input and

[39]

software architecture that is used for implementing system development is derived.

3) Implementation or Coding: Implementation/Coding starts once the developer gets the Design
document. The Software design is translated into source code. All the components of the software are
implemented in this phase.

4) Testing: Testing starts once the coding is complete and the modules are released for testing. In this
phase, the developed software is tested thoroughly and any defects found are assigned to developers to
get them fixed.

Retesting, regression testing is done until the point at which the software is aǎ ǇŜǊ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ
ŜȄǇŜŎǘŀǘƛƻƴΦ ¢ŜǎǘŜǊǎ ǊŜŦŜǊ {w{ ŘƻŎǳƳŜƴǘ ǘƻ ƳŀƪŜ ǎǳǊŜ ǘƘŀǘ ǘƘŜ ǎƻŦǘǿŀǊŜ ƛǎ ŀǎ ǇŜǊ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ ǎǘŀƴŘŀǊŘΦ

5) Deployment: Once the product is tested, it is deployed in the production environment or first UAT
(User Acceptance testing) is done depending on the customer expectation.

In the case of UAT, a replica of the production environment is created and the customer along with the
developers does the testing. If the customer finds the application as expected, then sign off is provided by
the customer to go live.

6) Maintenance: After the deployment of a product on the production environment, maintenance of the
product i.e. if any issue comes up and needs to be fixed or any enhancement is to be done is taken care by
the developers.

4.4.1 Common Software Development Life Cycle Models:
1. Waterfall model
2. Evolutionary model
3. Component based model

4.5 Waterfall model:

It is also known as a linear-sequential life cycle model. It is easy to use. In a waterfall model, there are

number of phases and each phase must be completed before the next phase begins and there must not be

any overlapping in the phases.

¢ƘŜ ǎŜǉǳŜƴǘƛŀƭ ǇƘŀǎŜǎ ƛƴ ²ŀǘŜǊŦŀƭƭ ƳƻŘŜƭ ŀǊŜ ҍ

4.5.1 Requirement analysis ҍ wŜǉǳƛǊŜƳŜƴǘ ǎǇŜŎƛŦƛŎŀǘƛƻƴ ŘƻŎǳƳŜƴǘ Ƴǳǎǘ ōŜ ǇǊŜǇŀǊŜŘ ōŀǎŜŘ on all

possible requirement of software.

4.5.2 System Design ҍ ŘŜŦƛƴƛƴƎ ǘƘŜ ƻǾŜǊŀƭƭ ǎȅǎǘŜƳ ŀǊŎƘƛǘŜŎǘǳǊŜ ōŀǎŜŘ ƻƴ ǘƘŜ ǊŜǉǳƛǊŜƳŜƴǘǎ ǊŜŎƻǊŘŜŘ ƛƴ

requirement specification document. Most of software success depends on this phase.

4.5.3 Implementation ҍ .ŀǎŜŘ ƻƴ ǎȅǎǘŜƳ ŘŜǎƛƎƴ ǎƳŀƭƭ ǇǊƻƎǊŀƳǎ ŀǎ ǳƴƛǘǎ ŀǊŜ ŘŜǾŜƭƻǇŜŘ ŀƴŘ ƭŀǘŜǊ ƻƴ ǘƘŜǎŜ

are integrated to work like a software

4.5.4 Verification ҍ ¢ŜǎǘƛƴƎ of the software to check whether it fulfills user requirements.

[40]

4.5.5 Maintenance ҍ {ƻƳŜ ƛǎǎǳŜǎ Ƴŀȅ ŀǊƛǎŜ ŀǘ ŎƭƛŜƴǘ ŜƴǾƛǊƻƴƳŜƴǘ ǘƻ ōŜ ǊŜǎƻƭǾŜŘ ŀǊŜ ŀǎ ŀ ǇŀǊǘ ƻŦ

maintenance.

1.5.6 Advantages of waterfall model

 ¶ Easy to understand

 ¶ Easy to arrange task

 ¶ Clearly defined stages

 ¶ Easy to manage

 ¶ Well understood milestones

4.5.7 Disadvantages of waterfall model

 ¶ Poor model for long project

 ¶ Cannot fulfill changing requirement

 ¶ No working software is developed till last phase

 ¶ Difficult to measure the progress in phases

4.6 Evolutionary Model

¢ƘŜ ŜǾƻƭǳǘƛƻƴŀǊȅ ƳƻŘŜƭ ƛǎ ƭƛƪŜ ϦLƴŎǊŜƳŜƴǘŀƭ ²ŀǘŜǊŦŀƭƭ aƻŘŜƭέΣ ǿƘŜǊŜ ŘŜǾŜƭƻǇƳŜƴǘ ŎȅŎƭŜ ƛǎ ŘƛǾƛŘŜŘ ƛƴǘƻ

smaller cycles, in this model users are able to get access to the product at the end of each cycle.

[41]

The users provide feedback on the product for planning to the development team for changing the

product, plans or process.

These incremental cycles are typically of two or four weeks in duration and continue until the product is

 fully developed.

4.6.1 Advantages of Evolutionary Model

 ¶ Error reduction: because versions are tested at each incremental cycle

 ¶ User satisfaction: Users are given full chance of experimenting partially developed system.

 ¶ High quality: Quality is maintained due to thoroughly testing.

 ¶ Low risk: There is significant reduction of risk as versions is implemented.

 ¶ Reduction Cost: It reduces cost by providing structured and disciplined steps.

4.6.2 Disadvantages of Evolutionary Model:-

Multiple versions: Developer has to make table of different versions developed.

 ¶ Difficult to Divide software: It is difficult to "divide the software and the problems in several

versions.

 ¶ Uncertain customer needs: A confused user has uncertainty over his requirements

 ¶ Time And Cost: As this model reduces "Time And Cost" but requirement is not gathered correctly,

may later on effect over time and cost.

4.6.3 Following are the 3 evolutionary process models.

a. The prototyping model

b. The spiral model

[42]

c. Concurrent development model

(a) The prototyping model:

It is software working model of limited functionality. In this

model, working programs are quickly produced.

Characteristics of Prototyping are:

1. Communication- between developer and customer to

discuss the overall objectives of the software.

2. Quick design- of known requirements

3. Modelling quick design- for clear idea about the

development of software

4. Construction of prototype- to be evaluated by the

customer itself.

5. Deployment, delivery, feedback- of developed software

Situations to use prototyping model

 ¶ When the desired system needs to have a lot of interaction with the end users.

 ¶ Typically, online systems, web interfaces where there are very high amount of interaction with

end users, are best suited for Prototype model.

 ¶ In Prototype model the end users constantly work with the system and provide a feedback which

is incorporated in the system.

(b) The Spiral Model:

It is a combination of prototype & sequential model or waterfall

model. All activities are done in one iteration .Software

development is done in the phases like planning, modelling,

construction, deployment; communicate on in spiral/continuous

manner. These phases are repeated till fully functional software is

not developed.

Situations to use spiral model

 Á Large and high budget projects

 Á When risk assessment is very critical

 Á Requirements are not very clearly defined.

 Á Requirements are vague and even complex

 Á The organization does not have much experience with

the domain.

 Á Ample time is available.

(c) The Concurrent development model

